Estimation in Functional Regression for General Exponential Families by Winston
نویسندگان
چکیده
This paper studies a class of exponential family models whose canonical parameters are specified as linear functionals of an unknown infinitedimensional slope function. The optimal minimax rates of convergence for slope function estimation are established. The estimators that achieve the optimal rates are constructed by constrained maximum likelihood estimation with parameters whose dimension grows with sample size. A change-ofmeasure argument, inspired by Le Cam’s theory of asymptotic equivalence, is used to eliminate the bias caused by the nonlinearity of exponential family models.
منابع مشابه
Nonparametric Regression in Natural Exponential Families
Abstract: Theory and methodology for nonparametric regression have been particularly well developed in the case of additive homoscedastic Gaussian noise. Inspired by asymptotic equivalence theory, there have been ongoing efforts in recent years to construct explicit procedures that turn other function estimation problems into a standard nonparametric regression with Gaussian noise. Then in prin...
متن کاملAcoustic modeling using exponential families
We present a framework to utilize general exponential families for acoustic modeling. Maximum Likelihood (ML) parameter estimation is carried out using sampling based estimates of the partition function and expected feature vector. Markov Chain Monte Carlo procedures are used to draw samples from general exponential densities. We apply our ML estimation framework to two new exponential families...
متن کاملTargeted Maximum Likelihood Estimation using Exponential Families.
Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. The key step in any TMLE implementation is constructing a sequence of least-favorable parametric models for the parameter of interest. This has been done for a variety of parameters arising in causal inference problems, by augmenting standard regression models ...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کامل